Advanced Topics on Privacy Enhancing
Technologies
CS523

Homomorphic Encryption Exercises

1 RSA

Show that RSA is multiplicatively homomorphic, i.e., RSA(m) x RSA(m') mod
N = RSA(m-m’).
Solution:

RSA(m) x RSA(m’) mod N = (m® mod N) x (m'® mod N) mod N
= (m® x m/®) mod N
= (m xm')° mod N
= RSA(m x m')

2 Circuit depth

The notion of circuit depth is very important when making use of a leveled HE
scheme. This is because this type of scheme only supports a limited number of
successive multiplications (its number of “levels”) before having to decrypt the
result.

We define the depth of a circuit as the minimum of consecutive multiplica-
tions required to evaluate a circuit. For example, the circuit (a-b) + (¢-d) has a
depth of one because both multiplications can be carried out in parallel, they do
not depend on each other inputs or outputs. However the circuit (a-b) - (¢ + d)
has a depth of two because the second multiplication takes as input the result
of the first multiplication.

Being able to analyze and optimize the depth of a circuit is, therefore, a cen-
tral task when making use of a leveled HE scheme as it will allow to optimize
its parameterization and efficiency.

What is the minimum multiplicative depth of the following circuits ?

1. f(z,y)=(a-z)-(b-y) with a,b # 0.

2. f(x) = 21024
3. fl@)=a+b-x+c-23+d-2° with a,b,¢,d # 0.

-1 _
4. f(z)= > a; -z with a; #0
i=0
5. f(wo<i<n) = h(g(h(wo<i<n))) given that h(xo<i<n) = Yo<i<n Where y; =
n—1 -1 .
> ai w; with a; j # 0, and that g(zo<i<n) = Yo<i<n wherey; = > bj-x]
§=0 §=0

with b; # 0.
Solution:

1. 2

[\

. [log,(1024)] = 10

w

. [logy(5)] + 1 =4 (but it is in practice possible to do it in 3)
4. Tlogy(¢ —1)] + 1 (but it is in practice possible to do it in [log,(¢ — 1)])

5. 14 ([logy(£—1)]+1)+1 (but it is in practice possible to do it in [log,(£—
D] +2)

3 Evaluating functions

Most of the time a HE scheme can only evaluate a few basis operations like
additions and multiplications. Those can, however, be used as building blocks
to construct more complicated and more useful functions. In this exercise, we
will see how to use simple operations to evaluate complicated functions, and how
some operations, which could be thought as simple at first glance, are in fact
complicated to evaluate when given only a limited number of basic operations.

Assume that you are given a HE scheme that can encrypt vectors of n
floating points numbers of the form a = (ag,...,a,—1) and evaluate on them
three operations Add, Mul, Rotate which are defined as

Add(a,b) : a; + b; for 0 < i < n,
Mul(a,b) : a; - b; for 0 <i <mn,
Rotate(a, k) : @;—k (mod n) for 0 <@ < n.
Using those three basis operations, explain how you would evaluate the fol-
lowing circuits (you can assume that the scheme supports an unlimited number

of operations and that it is also possible to add and multiply by plaintext vec-
tors):

—1 —1
1. avg(a) : (% Sy iy % o i)

oL N

=

exp(a) : (e®, ..., e%n—1)

M - a where M is an n by n matrix

abs(a) : (Jaol, ..., |an—1])
inv(a) : (%, cel, anl_l)
max(a) : (a;,...,a;) where a; is the maximum value of a

7. floor(a) : (lao],- -, [@n—1])

Solution:

1.

3.

We need logy(n) rotations and additions to do the inner sum and one
scalar multiplication by 1/n.

We can approximate e with a polynomial and evaluate that polynomial,
which can be done solely with additions, non-scalar and scalar multiplica-
tions.

(a) Naive : store each row of the matrix (so n rows), multiply each on of
them with the ciphertext (so n multiplications) and do an inner sum
using rotations and additions (so nlog,(n) rotations and additions).
Then repack the n ciphertexts into one ciphertext (so n — 1 rotations
and n additions.

(b) Better : store the matrix in its diagonal form and use a baby-step
glant-step algorithm to evaluate it, uses O(y/n) rotations and O(n)
multiplications and additions.

(a) Compute the square and then approximate the square root with a
polynomial.

(b) Approximate directly the absolute value within the desired range
using a polynomial.

(a) Divide the value by a constant to make them fall within a specific in-
terval, then use an iterative algorithm using additions and multiplica-
tions to compute the inverse, and divide the result by the initial scal-
ing constant to obtain the correct result (https://eprint.iacr.org/2016/421.pdf
Section 4.2).

(b) Approximate directly the inverse within a specific range of interest

using a polynomial.

(a) We can use the formula max(a,b) = (a+b+|a—b|)/2, approximating
the absolute value as explain in 4), then compare pairs of elements
Zi[:l&(nﬂ n - 27" times to obtain the max of the vector.

(b) We can use the following iterative algorithm :

i. Choose the number of iterations r (2 is usually sufficient) and
set w = .

ii. For r iterations, compute w = e*<i<n_ then divide w by its
average.

1

iii. Compute max(z) = = > x; - w;.

7. If |#; — |2;]| is small, then we have |z;] ~ z; — 5= sin(27z;), which can
be approximated by a polynomial. If |z; — |x;]| is not small, then there
is no know way to do it efficiently.

References

[1] F. McSherry, “Privacy integrated queries:an extensible platform for privacy-
preserving data analysis,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data (SIGMOD). Association
for Computing Machinery, Inc., June 2009, for more information, visit
the project page: http://research.microsoft.com/PINQ. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/privacy-
integrated-queries/

